Application Data Sheet

LC-MS

Determination of Methylmalonic Acid in Serum, Plasma and Urine by LCMS-8030 using RECIPE ClinMass ${ }^{\circledR}$ Complete Kit MS5000

Anja Grüning ${ }^{1}$, Dr. Lea Bonningtonl ${ }^{2}$
${ }^{1}$ Shimadzu Europe Gmbh ${ }^{2}$ RECIPE Chemicals + Instruments Gmbh

Introduction

Measurement of methylmalonic acid (MMA) is used as a specific diagnostic marker for the group of disorders known collectively called as methylmalonic acidemias
The metabolic pathway involves methylmalonyl-coenzyme $A(C o A)$ being converted into succinyl-CoA. Vitamin B_{12} is also needed for this conversion. Therefore measurement of MMA can be used to diagnose a number of genetic disorders in this pathway and is elevated in $90-98 \%$ of patients with B_{12} deficiency.
Typically the concentration of MMA is low and normally requires off-line extraction before analysis, however in these experiments a sensitive method was developed requiring minimal pre-treatment with just $10 \mu \mathrm{~L}$ sample injection to achieve suitable detection.

Materials and methods

The LCMS-8030 triple quadrupole mass spectrometer was coupled to a Nexera UHPLC system. MMA was measured using a commercially available test kit ClinMass® Complete Kit for Methylmalonic Acid in Serum, Plasma and Urine, MS5000 (RECIPE Chemicals + Instruments GmbH, Dessauerstraße 3, 80992 München, Germany). Chemical standards, control samples, analytical column and mobile phase solvents were provided by the kit. $100 \mu \mathrm{~L}$ of sample was added to $400 \mu \mathrm{~L}$ of precipitant solution (containing internal standard). Following centrifugation $10 \mu \mathrm{~L}$ of supernatant was analysed.
For analysis the $[\mathrm{M}-\mathrm{H}]$ - ion was measured and used as the precursor ion (negative electrospray ionization).

Analytical Conditions

UHPLC:

 Nexera UHPLC$0.8 \mathrm{~mL} / \mathrm{min}$ starting at $20 \% \mathrm{~B}$
Injection volume: $\quad 10 \mu \mathrm{~L}$
Column temperature: $\quad 30^{\circ} \mathrm{C}$
Mass spectrometer: LCMS-8030
Source conditions: Desolvation Line:
$275^{\circ} \mathrm{C}$
Heat Block:
Nebulizer Gas:
Drying Gas:
有
Dwell time:
Pause time:

Ionization: Electrospray ionization (ESI), negative mode.
Scan Type: Multiple-reaction-monitoring mode (MRM)

Table 1 LC parameters were chosen for rapid compound elution and fast analysis time.

Time (min)	Mobile Phase A $(\%)$	Mobile Phase B $(\%)$	Flow rate $(\mathrm{mL} / \mathrm{min})$
0	80	20	0.8
0.01	10	90	0.8
1.6	10	90	0.8
1.61	80	20	0.8
2.3	80	20	0.8
2.31	80	20	1.4
2.75	80	20	1.4
2.8	80	20	0.1

Fig. 1 LC-MS separation of MMA and deuterated standard in under three minutes by fast chromatography.

Table 2 MMA optimized MRM transitions, retention time (RT). $\mathrm{T} / \mathrm{I}=$ target or internal standard

Compound \boldsymbol{d}		Formula	MRM1	MRM2	RT
MMA	T	C4H604	$117.1>73.2$	$117.1>55.2$	1.63
D3-MMA	I	C4H3D304	$120.1>75.9$	-	1.63

Application

Data Sheet

Results

The rapid separation of MMA produced good peak shape and was eluted in less than two minutes.
The calibration curve showed good linearity over a clinically relevant range 26.1-177 $\mu \mathrm{g} / \mathrm{L}$ (Fig. 2).
Two patient samples were anlaysed and measured in duplicate yielding MMA concentrations of $26.7 \mu \mathrm{~g} / \mathrm{L}$ and $65.7 \mu \mathrm{~g} / \mathrm{L}$, respectively. The replicate analyses achieved good analytical reproducibility at less than 5% relative standard deviation.

Fig. 2 Calibration curve for methylmalonic acid (concentraion range 26.1-177 $\mu \mathrm{g} / \mathrm{L}$).

Conclusion

The application of the clinical ClinMass® Complete Kit for Methylmalonic Acid in Serum, Plasma and Urine proved simple to implement and showed good sensitivity and linearity in a clinically relevant concentration range.

